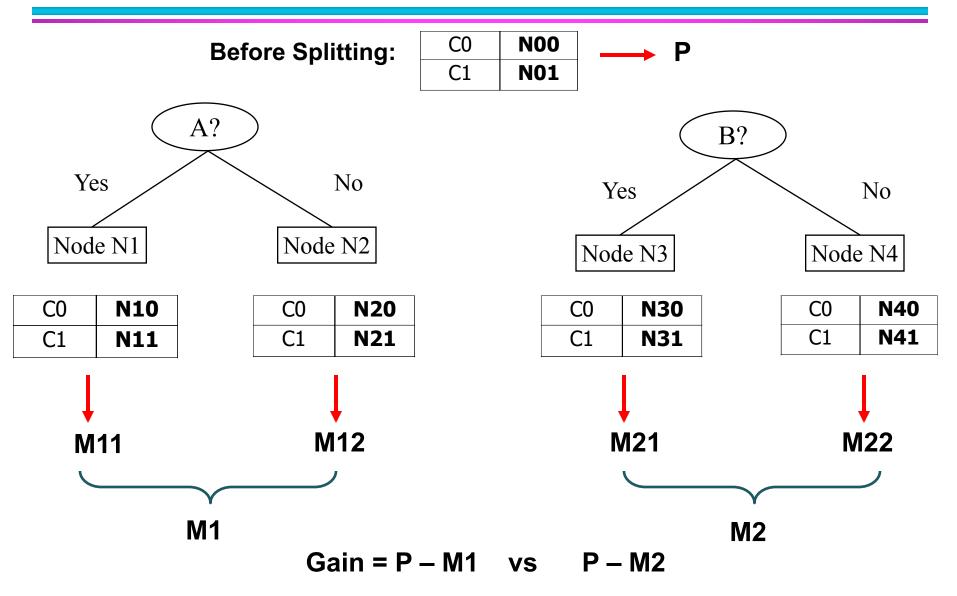
Finding the Best Split



Introduction to Data Mining, 2nd Edition

Measure of Impurity: GINI

• Gini Index for a given node *t*

Gini Index =
$$1 - \sum_{i=0}^{c-1} p_i(t)^2$$

Where $p_i(t)$ is the frequency of class *i* at node *t*, and *c* is the total number of classes

- Maximum of 1 1/c when records are equally distributed among all classes, implying the least beneficial situation for classification
- Minimum of 0 when all records belong to one class, implying the most beneficial situation for classification
- Gini index is used in decision tree algorithms such as CART, SLIQ, SPRINT

Measure of Impurity: GINI

• Gini Index for a given node t :

Gini Index = 1 -
$$\sum_{i=0}^{c-1} p_i(t)^2$$

For 2-class problem (p, 1 − p):
 GINI = 1 − p² − (1 − p)² = 2p (1-p)

C1	0	C1	1	C1	2	C1	3	
C2	6	C2	5	C2	4	C2	3	
Gini=0.000		Gini=	Gini=0.278		0.444	Gini=0.500		

Computing Gini Index of a Single Node

Gini Index =
$$1 - \sum_{i=0}^{c-1} p_i(t)^2$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
Gini = 1 - $P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

C1	1
C2	5

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
Gini = 1 - (1/6)² - (5/6)² = 0.278

C1	2
C2	4

P(C1) = 2/6 P(C2) = 4/6Gini = 1 - (2/6)² - (4/6)² = 0.444

Introduction to Data Mining, 2nd Edition

Computing Gini Index for a Collection of Nodes

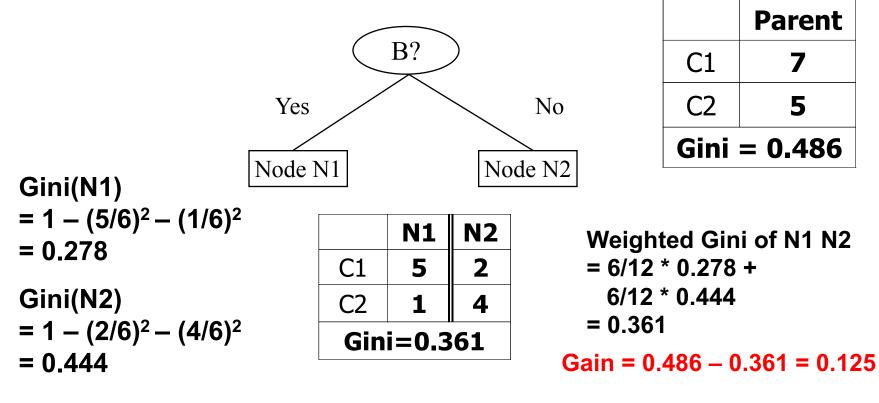
• When a node *p* is split into *k* partitions (children)

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child *i*, n = number of records at parent node *p*.

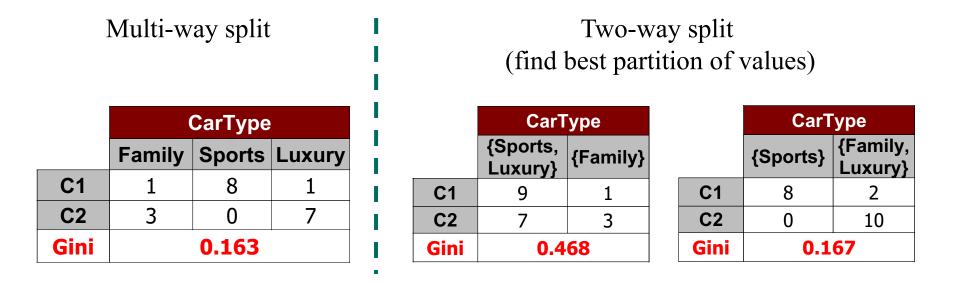
Binary Attributes: Computing GINI Index

- Splits into two partitions (child nodes)
- Effect of Weighing partitions:
 - Larger and purer partitions are sought



Categorical Attributes: Computing Gini Index

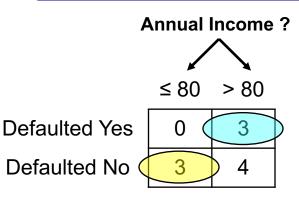
- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions



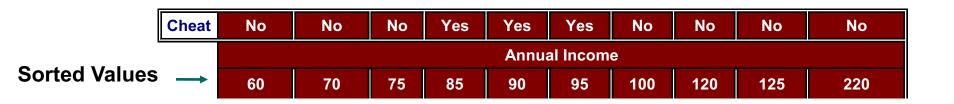
Which of these is the best?

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting values
 Number of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A ≤ v and A > v
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient! Repetition of work.

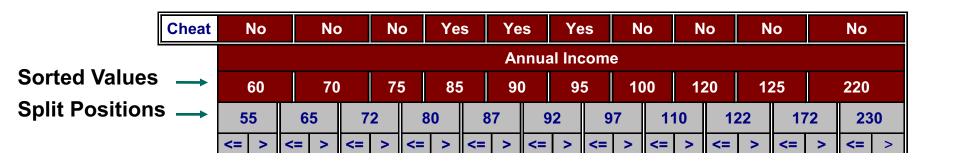
ID	Home Owner	Marital Status	Annual Income	Defaulted
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes



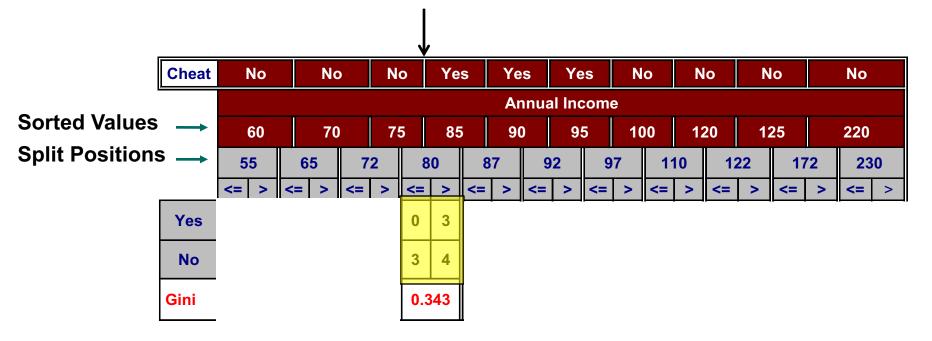
- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index



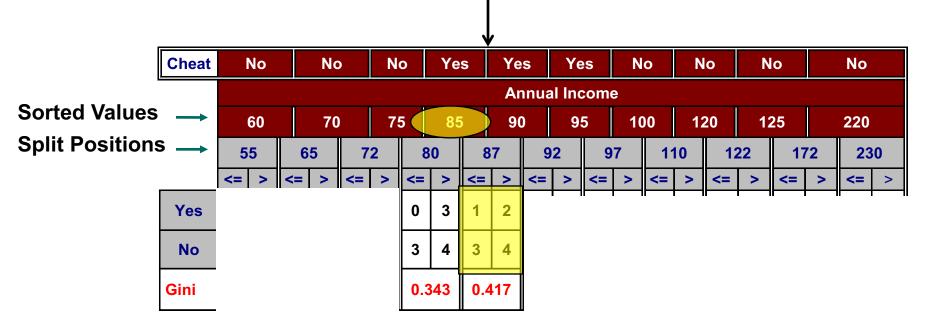
- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index



- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index



- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index



- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

[Cheat		No		No)	N	0	Ye	S	Ye	S	Ye	es	N	0	N	ο	N	0		No	
o (1)()											Ar	nnua	al Inc	come	•								
Sorted Values		I	60		70)	7	5	85	5	9()	9	5	10	0	12	20	12	25		220	
Split Positions	→	5	5	6	5	7	2	8	0	8	7	9	2	9	7	11	0	12	22	17	72	23	0
		<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini	0.4	20	0.4	00	0.3	875	0.3	43	0.4	17	0.4	100	<u>0.3</u>	<u>800</u>	0.3	43	0.3	575	0.4	00	0.4	20

Measure of Impurity: Entropy

Entropy at a given node t

$$Entropy = -\sum_{i=0}^{c-1} p_i(t) log_2 p_i(t)$$

Where $p_i(t)$ is the frequency of class *i* at node *t*, and *c* is the total number of classes

- Maximum of log₂c when records are equally distributed among all classes, implying the least beneficial situation for classification
- Minimum of 0 when all records belong to one class, implying most beneficial situation for classification
- Entropy based computations are quite similar to the GINI index computations

Computing Entropy of a Single Node

$$Entropy = -\sum_{i=0}^{c-1} p_i(t) log_2 p_i(t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0 \qquad P(C2) = 6/6 = 1$$

Entropy = - 0 log 0 - 1 log 1 = - 0 - 0 = 0

C1	1
C2	5

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
Entropy = - (1/6) $\log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$

C1	2
C2	4

P(C1) = 2/6 P(C2) = 4/6 Entropy = $-(2/6) \log_2 (2/6) - (4/6) \log_2 (4/6) = 0.92$

Computing Information Gain After Splitting

• Information Gain:

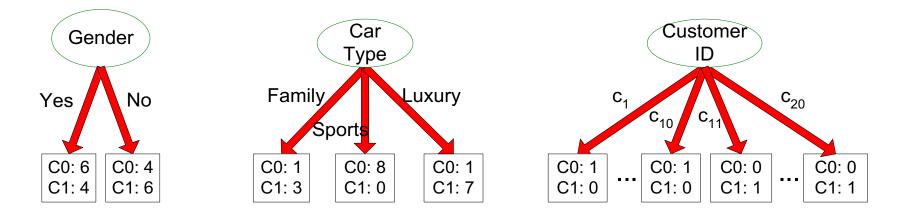
$$Gain_{split} = Entropy(p) - \sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)$$

Parent Node, p is split into k partitions (children) n_i is number of records in child node i

- Choose the split that achieves most reduction (maximizes GAIN)
- Used in the ID3 and C4.5 decision tree algorithms
- Information gain is the mutual information between the class variable and the splitting variable

Problem with large number of partitions

 Node impurity measures tend to prefer splits that result in large number of partitions, each being small but pure



 Customer ID has highest information gain because entropy for all the children is zero

Gain Ratio

• Gain Ratio:

$$Gain Ratio = \frac{Gain_{split}}{Split Info} \qquad Split Info = -\sum_{i=1}^{k} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

Parent Node, p is split into k partitions (children)

 n_i is number of records in child node i

- Adjusts Information Gain by the entropy of the partitioning (*Split Info*).
 - Higher entropy partitioning (large number of small partitions) is penalized!
- Used in C4.5 algorithm
- Designed to overcome the disadvantage of Information Gain

Gain Ratio

• Gain Ratio:

$$Gain Ratio = \frac{Gain_{split}}{Split Info} \qquad Split Info = \sum_{i=1}^{k} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

Parent Node, p is split into k partitions (children) n_i is number of records in child node i

	CarType							
	Family Sports Luxur							
C1	1	8	1					
C2	3	0	7					
Gini	0.163							

SplitINFO = 1.52

	CarType						
	{Sports, Luxury}	{Family}					
C1	9	1					
C2	7	3					
Gini	0.468						

SplitINFO = 0.72

	CarType						
	{Sports}	{Family, Luxury}					
C1	8	2					
C2	0	10					
Gini	0.167						

SplitINFO = 0.97

Measure of Impurity: Classification Error

Classification error at a node t

 $Error(t) = 1 - \max_{i} [p_i(t)]$

- Maximum of 1 1/c when records are equally distributed among all classes, implying the least interesting situation
- Minimum of 0 when all records belong to one class, implying the most interesting situation

Computing Error of a Single Node

$$Error(t) = 1 - \max_{i}[p_i(t)]$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
Error = 1 - max (0, 1) = 1 - 1 = 0

C1	1
C2	5

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
Error = 1 - max (1/6, 5/6) = 1 - 5/6 = 1/6

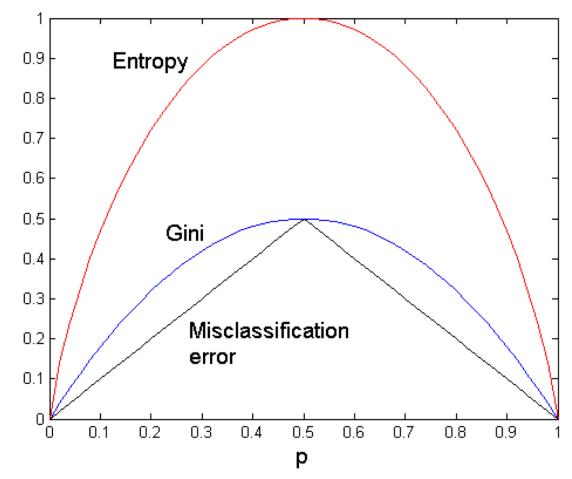
C1	2
C2	4

P(C1) = 2/6 P(C2) = 4/6Error = 1 - max (2/6, 4/6) = 1 - 4/6 = 1/3

Introduction to Data Mining, 2nd Edition

Comparison among Impurity Measures

For a 2-class problem:



Introduction to Data Mining, 2nd Edition

Decision Tree Based Classification

Advantages:

- Relatively inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Robust to noise (especially when methods to avoid overfitting are employed)
- Can easily handle redundant attributes
- Can easily handle irrelevant attributes (unless the attributes are interacting)

Disadvantages: .

- Due to the greedy nature of splitting criterion, interacting attributes (that can distinguish between classes together but not individually) may be passed over in favor of other attributed that are less discriminating.
- Each decision boundary involves only a single attribute